Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216.387
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23706, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591869

RESUMEN

In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.


Asunto(s)
Antineoplásicos , Neoplasias , Femenino , Humanos , Tacrina/farmacología , Tacrina/química , Antifúngicos/farmacología , Anticonvulsivantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Estructura Molecular
2.
Drug Des Devel Ther ; 18: 1035-1052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585255

RESUMEN

Introduction: The paper presents the results of a study on the first synthesized benzimidazole derivatives obtained from labile nature carboxylic acids. The synthesis conditions of these substances were studied, their structure was proved, and some components were found to have sugar-reducing activity on the model of alloxan diabetes in rats. Methods: The study used molecular modeling methods such as docking based on the evolutionary model (igemdock), RP_HPLC method to monitor the synthesis reaction, and 1H NMR and 13C NMR, and other methods of organic chemistry to confirm the structures of synthesized substances. Results & Discussion: The docking showed that the ursodeoxycholic acid benzimidazole derivatives have high tropics to all imidazoline receptor carriers (PDB ID: 2XCG, 2bk3, 3p0c, 1QH4). The ursodeoxycholic acid benzimidazole derivative and arginine and histidine benzimidazole derivatives showed the highest sugar-lowering activity in the experiment on alloxan-diabetic rats. For these derivatives, the difference in glucose levels of treated rats was significant against untreated control. Therefore, the new derivatives of benzimidazole and labile natural organic acids can be used to create new classes of imidazoline receptor inhibitors for the treatment of diabetes mellitus and hypertension.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Ratas , Animales , Hipoglucemiantes/química , Relación Estructura-Actividad , Receptores de Imidazolina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Ácido Ursodesoxicólico , Bencimidazoles/química , Azúcares , Simulación del Acoplamiento Molecular , Estructura Molecular
3.
J Biochem Mol Toxicol ; 38(4): e23704, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588035

RESUMEN

A series of novel pyrazole-dicarboxamides were synthesized from pyrazole-3,4-dicarboxylic acid chloride and various primary and secondary sulfonamides. The structures of the new compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.024-0.496 µM for hCA I and 0.006-5.441 µM for hCA II. Compounds 7a and 7i showed nanomolar level of inhibition of hCA II, and these compounds exhibited high selectivity for this isoenzyme. Molecular docking studies were performed between the most active compounds 7a, 7b, 7i, and the reference inhibitor AAZ and the hCAI and hCAII to investigate the binding mechanisms between the compounds and the isozymes. These compounds showed better interactions than the AAZ. ADMET and drug-likeness analyses for the compounds have shown that the compounds can be used pharmacologically in living organisms.


Asunto(s)
Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Humanos , Inhibidores de Anhidrasa Carbónica/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Anhidrasa Carbónica II , Espectroscopía Infrarroja por Transformada de Fourier , Pirazoles/química , Sulfonamidas/química , Isoenzimas , Sulfanilamida
4.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38642353

RESUMEN

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Isatina , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Vorinostat/farmacología , Isatina/farmacología , Línea Celular Tumoral , Amidas/farmacología , Diseño de Fármacos , Antineoplásicos/farmacología , Sulfonamidas/farmacología , Zinc/metabolismo , Zinc/farmacología , Proliferación Celular , Estructura Molecular
5.
Drug Dev Res ; 85(3): e22186, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643351

RESUMEN

Current chemotherapeutic agents have several limitations, including lack of selectivity, the development of undesirable side effects, and chemoresistance. As a result, there is an unmet need for the development of novel small molecules with minimal side effects and the ability to specifically target tumor cells. A new series of 3-phenoxybenzoic acid derivatives, including 1,3,4-oxadiazole derivatives (4a-d) and benzamides derivatives (5a-e) were synthesized; their chemical structures were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectra; and various physicochemical properties were determined. The antiproliferative activities of the new derivatives were evaluated by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Three compounds (4b, 4c, and 4d) exhibited cytotoxicity against two of the three cell lines tested, five compounds (3, 4a, 5a, 5b, and 5e) were toxic to one cell line, while two compounds (5c and 5d) were not cytotoxic to any of the three cell lines tested in the current study. Based on docking scores, MTT assay findings, and vascular endothelial growth factor receptor 2 (VEGFR-2) kinase activity data, Compound 4d was selected for further biological investigation. Flow cytometry was used to determine the mode of cell death (apoptosis vs. necrosis) and the effect on cell cycle progression. Compound 4d arrested HepG2 hepatocellular carcinoma cells in the G2/M phase and activated both the intrinsic and extrinsic apoptosis pathways. In conclusion, Compound 4d has shown promising results for future research as a potent VEGFR-2 tyrosine kinase inhibitor.


Asunto(s)
Antineoplásicos , Benzamidas , Benzoatos , Estructura Molecular , Relación Estructura-Actividad , Benzamidas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular , Proliferación Celular , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Diseño de Fármacos
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 728-734, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621876

RESUMEN

Mesona chinensis is a common medicinal and edible plant in the Lingnan region of China, which has extensive pharmacological activity. However, the study of its chemical constituents is not sufficient. In this study, a variety of modern chromatographic separation techniques were used to isolate two compounds from 95% ethanol extract of the grass parts of M. chinensis. Their absolute configurations were determined by ultraviolet spectroscopy(UV), infrared spectroscopy(IR), high resolution mass spectrometry(HR-ESI-MS), 1D and 2D nuclear magnetic resonance(1D NMR and 2D NMR), and single-crystal X-ray diffraction(SC-XRD). Specifically, they were two new benzoyl-sesquiterpenes and named mesonanol A and mesonanol B, respectively. The results of the pharmacological activity evaluation showed that neither of the two new compounds showed obvious antiviral and anti-inflammatory activities.


Asunto(s)
Lamiaceae , Sesquiterpenos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectrofotometría Infrarroja , Estructura Molecular
7.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1564-1569, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621940

RESUMEN

Various separation methods in combination with spectral data analysis, X-ray single crystal diffraction analysis, and litera-ture data comparison were employed to clarify the chemical constituents of Itea yunnanensis. Seven compounds were obtained from I. yunnanensis, which were identified as(S)-3-[1-(4-hydroxyphenyl)propane-2-yl]-4-methoxybenzoate methyl ester(1), iteafuranal B(2), syringaresinol(3), dihydrokaempferol(4), trimethoxybenzene(5), eicosane(6), and nonacosane(7), respectively. Among them, compound 1 was a new nor-neolignan compound named iteanorneoligan A, and the rest of the compounds were identified from I. yunnanensis for the first time. The anti-hepatocellular carcinoma effect of the compound was evaluated based on Sk-hep-1 cells model via MTT assay, and compound 2 showed a significant inhibitory effect on the proliferation of Sk-hep-1 cells with an IC_(50) of 9.4 µmol·L~(-1). The antioxidant capacity was determined via DPPH, ABTS~(·+), and O■ radical scavenging ability, and compound 1 exhibited a significant ABTS~(·+) radical scavenging effect with an IC_(50) of 0.178 mg·mL~(-1).


Asunto(s)
Lignanos , Estructura Molecular , Benzotiazoles , Ácidos Sulfónicos , Antioxidantes/farmacología , Antioxidantes/química
8.
Chem Pharm Bull (Tokyo) ; 72(4): 393-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644165

RESUMEN

Preparation of drug metabolites at the milligram scale is essential for determining the structure and toxicity of drug metabolites. However, their preparation using recombinant proteins and human liver microsomes (HLM) is often difficult because of technical and ethical issues. Reproducing human drug metabolism in food-derived microorganisms may be useful for overcoming these challenges. In this study, we identified an unknown metabolite of the anaesthetic drug lidocaine, which is metabolised by HLM. By screening for lidocaine metabolic activity in five types of foods (blue cheese, shiitake mushroom, natto, yoghurt, and dry yeast), we found that bacteria isolated from natto reproduced the lidocaine metabolic reaction that occurs in HLM. A fraction containing the unknown lidocaine metabolite was prepared through mass cultivation of a Bacillus subtilis standard strain, ethyl acetate extraction, open column chromatography, and HPLC purification. We identified the unknown metabolite as 3-(2,6-dimethylphenyl)-1-ethyl-2-methyl-4-imidazolidinone using NMR. Our results showed that food-derived microorganisms can produce large amounts of human drug metabolites via large-scale cultivation. Additionally, food microorganisms that can reproduce drug metabolism in humans can be used to examine drug metabolites at a low cost and without ethical issues.


Asunto(s)
Lidocaína , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/química , Lidocaína/metabolismo , Lidocaína/química , Lidocaína/análisis , Bacillus subtilis/metabolismo , Estructura Molecular , Cromatografía Líquida de Alta Presión
9.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644164

RESUMEN

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Asunto(s)
Enfermedad de Chagas , Quinonas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Animales , Trypanosoma cruzi/efectos de los fármacos , Ratones , Tripanocidas/farmacología , Tripanocidas/química , Quinonas/química , Quinonas/farmacología , Pruebas de Sensibilidad Parasitaria , Estructura Molecular , Luz , Modelos Animales de Enfermedad , Relación Estructura-Actividad
10.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644198

RESUMEN

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Relación Estructura-Actividad , Humanos , Descubrimiento de Drogas , Estructura Molecular , Calcio/metabolismo , Células HEK293 , Relación Dosis-Respuesta a Droga
11.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612884

RESUMEN

We present a study of salicylic acid and its hydrates, with up to four water molecules, done by employing chirped-pulse Fourier transform microwave spectroscopy. We employed the spectral data set of the parent, 13C, and 2H isotopologues to determine the molecular structure and characterize the intra- and intermolecular interactions of salicylic acid and its monohydrate. Complementary theoretical calculations were done to support the analysis of the experimental results. For the monomer, we analyzed structural properties, such as the angular-group-induced bond alternation (AGIBA) effect. In the microsolvates, we analyzed their main structural features dominated by the interaction of water with the carboxylic acid group. This work contributes to seeding information on how water molecules accumulate around this group. Moreover, we discussed the role of cooperative effects further stabilizing the observed inter- and intramolecular hydrogen bond interactions.


Asunto(s)
Ácido Salicílico , Agua , Estructura Molecular , Análisis Espectral , Espectrometría de Masas
12.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38613499

RESUMEN

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Pirimidinas , Humanos , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Tiofenos/farmacología , Tiofenos/síntesis química , Tiofenos/química , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Línea Celular Tumoral , Descubrimiento de Drogas , Apoptosis/efectos de los fármacos , Femenino , Ratones Desnudos , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
13.
J Med Chem ; 67(8): 6570-6584, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38613773

RESUMEN

NNRTI is an important component of the highly active antiretroviral therapy (HAART), but the rapid emergence of drug resistance and poor pharmacokinetics limited their clinical application. Herein, a series of novel aryl triazolone dihydropyridines (ATDPs) were designed by structure-guided design with the aim of improving drug resistance profiles and pharmacokinetic profiles. Compound 10n (EC50 = 0.009-17.7 µM) exhibited the most active potency, being superior to or comparable to that of doravirine (DOR) against the whole tested viral panel. Molecular docking was performed to clarify the reason for its higher resistance profiles. Moreover, 10n demonstrated excellent pharmacokinetic profile (T1/2 = 5.09 h, F = 108.96%) compared that of DOR (T1/2 = 4.4 h, F = 57%). Additionally, 10n was also verified to have no in vivo acute or subacute toxicity (LD50 > 2000 mg/kg), suggesting that 10n is worth further investigation as a novel oral NNRTIs for HIV-1 therapy.


Asunto(s)
Fármacos Anti-VIH , Dihidropiridinas , VIH-1 , Simulación del Acoplamiento Molecular , Inhibidores de la Transcriptasa Inversa , Triazoles , VIH-1/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Triazoles/farmacocinética , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacocinética , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacocinética , Dihidropiridinas/química , Dihidropiridinas/farmacología , Dihidropiridinas/farmacocinética , Relación Estructura-Actividad , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Animales , Masculino , Descubrimiento de Drogas , Estructura Molecular , Ratones
14.
Nat Prod Rep ; 41(4): 520-524, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38616726

RESUMEN

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as eugeniinaline A from Leuconotis eugeniifolia.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Estructura Molecular
15.
Sci Rep ; 14(1): 8457, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605072

RESUMEN

A new series of imidazothiazole derivatives bearing thiazolidinone moiety (4a-g and 5a-d) were designed, synthesized and evaluated for potential epidermal growth factor receptor (EGFR) kinase inhibition, anticancer and anti-inflammatory activity, cardiomyopathy toxicity and hepatotoxicity. Compound 4c inhibited EGFR kinase at a concentration of 18.35 ± 1.25 µM, whereas standard drug erlotinib showed IC50 value of 06.12 ± 0.92 µM. The molecular docking, dynamics simulation and MM-GBSA binding energy calculations revealed strong interaction of compound 4c with binding site of EGFR. The synthesized compounds were evaluated for their anticancer activity by MTT assay against three human cancer cell lines A549 (Lung), MCF-7 (Breast), HCT116 (Colon), one normal human embryonic kidney cell line HEK293 and also for their EGFR kinase inhibitory activity. Few compounds of the series (4a, 4b, 4c) showed promising growth inhibition against all the tested cancer cell lines and against EGFR kinase. Among these, compound 4c was found to be most active and displayed IC50 value of 10.74 ± 0.40, 18.73 ± 0.88 against cancer cell lines A549 and MCF7 respectively whereas it showed an IC50 value of 96.38 ± 1.79 against HEK293 cell line indicating lesser cytotoxicity for healthy cell. Compounds 4a, 4b and 4c were also examined for their apoptosis inducing potential through AO/EB dual staining assay and it was observed that their antiproliferative activity against A549 cells is mediated via induction of apoptosis. Cardiomyopathy studies showed normal cardiomyocytes with no marked sign of pyknotic nucleus of compounds 4b and 4c. Hepatotoxicity studies of compounds 4b and 4c also showed normal architecture of hepatocytes. Compounds 4a-g and 5a-d were also evaluated for their in-vitro anti-inflammatory activity by protein albumin denaturation assay. Among the tested compounds 4a-d and 5a-b showed promising activity and were selected for in-vivo inflammatory activity against carrageenan rat paw edema test. Among these compounds, 4b was found to be most active in the series showing 84.94% inhibition, whereas the standard drug diclofenac sodium showed 84.57% inhibition. Compound 4b also showed low ulcerogenic potential and lipid peroxidation. Thus, compounds 4c and 4b could be a promising lead compounds for developing anticancer and anti-inflammatory agents with low toxicity and selectivity.


Asunto(s)
Antineoplásicos , Cardiomiopatías , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Ratas , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Células HEK293 , Antineoplásicos/química , Antiinflamatorios/farmacología , Receptores ErbB/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Inhibidores de Proteínas Quinasas/química
16.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38606915

RESUMEN

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Hidantoínas , Humanos , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica IX , Relación Estructura-Actividad , Anhidrasa Carbónica I , Anhidrasa Carbónica II , Isoformas de Proteínas/metabolismo , Ftalimidas/farmacología , Hidantoínas/farmacología , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular
17.
J Med Chem ; 67(8): 6119-6143, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626917

RESUMEN

Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Relación Estructura-Actividad , Regulación Alostérica/efectos de los fármacos , Humanos , Transportador 2 de Aminoácidos Excitadores/metabolismo , Células HEK293 , Animales , Estructura Molecular
18.
Angew Chem Int Ed Engl ; 63(19): e202318127, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38570814

RESUMEN

The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λmax as long as 720 nm. Computational studies allow the development of a platform for the prediction of λmax and λEm. Furthermore, we demonstrate the compatibility of these novel fluorophores with live cell imaging in HEK293 cells, suggesting PyrAtes as potent intracellular markers.


Asunto(s)
Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Células HEK293 , Microscopía Fluorescente , Sales (Química)/química , Estructura Molecular
19.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572769

RESUMEN

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ésteres , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química , Humanos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Sulfonas/química , Sulfonas/farmacología , Sulfonas/síntesis química , Relación Estructura-Actividad , Compuestos de Vinilo/química , Compuestos de Vinilo/farmacología , Compuestos de Vinilo/síntesis química
20.
Nat Commun ; 15(1): 3314, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632229

RESUMEN

Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.


Asunto(s)
Aminoácidos , Luminiscencia , Aminoácidos/química , Temperatura , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...